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PRICING IN TWO-SIDED MARKETS WITH DYNAMIC 
SUBSCRIPTION PROCESS AND USERS’ EXPECTATIONS 
 
 

Abstract. In a dynamic framework, we study pricing strategies in two-sided 
markets while considering users’ expectations. The results show that in the 
steady-state equilibrium, except for the indirect network effects, the growth rates and 
users’ beliefs may also cause skewed pricing. In non-equilibrium, we find that in the 
early period, the platform may delay the entrance of users on one side and attract 
only users on the other side if the costs of attracting a large user base on this side are 
large. Besides, when the weight coefficients of the conjectured numbers that depend 
on users’ beliefs are high, the optimal price trajectories increase rapidly in the 
period when the numbers of users are low and then converge to low equilibrium 
prices. 

Keywords: network effects; dynamic pricing; two-sided markets; expectations. 
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1 Introduction 
 
In recent years, the markets in which two or more sides of users interact 

through platforms have attracted the attention of both business and academia. 
Examples include online shopping markets such as Amazon or eBay, video games 
such as Xbox 360, payment systems such as MasterCard or Visa, etc. A major feature 
of these two-sided (or multi-sided) markets (Weyl, 2010; Armstrong, 2006) is 
indirect network effects between distinct sides of users. It means that the benefits of 
a user on one side are influenced by the number of users on the other side. For 
instance, buyers are more willing to subscribe to an online shopping platform with 
many sellers because they can find more suitable products. On the other side, with 
more buyers on the platform, subscribed sellers can sell more products. 

In such markets, pricing strategies are important. Early researchers have found 
that in equilibrium, skewed pricing can be profitable (Rochet and Tirole, 2003; 
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Armstrong, 2006). For example, on an online shopping platform, such as Amazon, 
buyers can use the platform for free in most cases, while sellers need to pay for 
selling goods, such as subscription fees or commission fees. By implementing this 
pricing strategy, a platform in the markets may make a loss on the side where users 
are subsidized. However, with the indirect network effects, it can earn money from 
users on the other side. In addition, except for studies in a static framework focusing 
on equilibrium prices, intertemporal pricing strategies are also used by many 
two-sided platforms. Take Uber as an example. When Uber entered the market, it 
spent heavily on subsidizing passengers and drivers. However, with enough 
subscribed users, it began to reduce subsidies and raise prices. 

In this paper, we focus on dynamic pricing in two-sided markets. In a dynamic 
framework, users may hold expectations because the benefits that they can make in 
the future are unknown. Users may base expectations on participations in history 
(Hałaburda et al., 2020) or beliefs (Jullien and Pavan, 2019). When users base 
expectations on participations in history only, we say that these users are myopic and 
the expectations are always fulfilled (Evans and Schmalensee, 2010). However, if 
users on one side form beliefs regarding participations of the other side in the future, 
the conjectured number that depends on users’ beliefs may differ from the existing 
number, which implies that the expectations may not be fulfilled in non-equilibrium. 

To address this question, we build a dynamic model to describe the dynamic 
subscription process of users. In the dynamic process, users base their subscription 
decisions not only on the existing number of users on the other side (the effect of 
history) but also on the existing number of users on the same side (the effect of 
beliefs). By using the optimal control theory, we find that the expectation bias that 
comes from the difference between beliefs and reality affects the optimal prices in 
non-equilibrium. However, it does not affect the equilibrium prices since users are 
rational. Hence, in the long term, the real status of the platform, such as the service 
quality and the numbers of users, is the key to make profits. In the equilibrium of the 
dynamic model, we also find that except for the indirect network effects, the growth 
rates and users’ beliefs may also give rise to skewed pricing in two-sided markets. In 
non-equilibrium, the results show that in the early period, the platform may delay the 
entrance of users on one side and attract only users on the other side if the costs of 
attracting a large user base on this side are large. 

The rest of the paper is organized as follows. The related literature is reviewed 
in the next section. We then set forth our model in Section 3. In Section 4, we 
theoretically analyze dynamic pricing strategies and in Section 5, we provide an 
equilibrium analysis. The optimal trajectory is discussed through numerical analysis 
in Section 6. Section 7 concludes the paper. 

2. Literature review 
Our research primarily relates to two streams of research. The first related 

stream involves studies on two-sided markets. In this research area, a large body of 
research on pricing problems has been conducted under a static framework. Rochet 
and Tirole (2003), for example, analyze two-sided platforms that primarily charge 
transaction fees and find that in a monopoly platform, the optimal price structure is 
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decided by the ratio of price elasticities on the two sides. Armstrong’s (2006) results 
show that the optimal subscription fees are also affected by cross-group externalities 
compared with the standard Lerner formula, which implies that the platform can set 
a low price on one side and benefit from users on the other side. Our study differs 
from theirs in that we focus on price trajectory in a dynamic framework. 

In addition, under incomplete information, expectations are considered by 
some researchers who study markets with network effects following from Katz and 
Shapiro (1985) who study markets with direct network effects to recent research on 
two-sided markets, such as Caillaud and Jullien’s (2003), Gabszewisz and Wauthy 
(2014), Hagiu and Hałaburda (2014) and Belleflamme and Peitz (2019). In these 
papers, the expected numbers are exogenously given, but will be equal to the real 
numbers in the fulfilled expectations equilibrium (see Katz and Shapiro, 1985). 
However, they do not consider the effect of history on expectations (Hałaburda et al., 
2020) and users’ beliefs (Jullien and Pavan, 2019; Hałaburda and Yehezkel, 2019; 
Markovich and Yehezkel, 2019). In this paper, because we study pricing problem in 
a dynamic framework, we assume that expectations are endogenously decided by 
participations in history and users’ beliefs. 

The second stream is about dynamics in markets with network effects. A 
famous question in this stream is the startup problem. Specifically, due to the 
network effects, attracting users in the initial period becomes difficult. In markets 
with direct network effects, Rohlfs’s (1974) results show that multiple equilibria 
may exist, and when the number of users is higher than the critical mass (one of the 
equilibria), the number of users can grow by itself. In two-sided markets, Evans and 
Schmalensee (2010) study the same problem and find a unique critical trajectory. 
Similarly, their results show that the markets can reach the equilibrium with high 
numbers of users when the initial numbers of users are above the critical trajectory. 
In this paper, we use their model to describe the dynamic subscription process of 
users. The difference is that in our model, users’ beliefs can affect their subscription 
decisions. 

Considering platforms endogenously decide prices in different periods, some 
researchers analyze dynamic pricing in markets with network effects. In markets 
with direct network effects, Dhebar and Oren (1985, 1986) find that the optimal 
price trajectory increases with the number of users and that, to ensure the number of 
users can grow by itself, the platform may charge lower prices than interior solutions 
in the initial period. Cabral’s (2011) results show that if considering platforms’ future 
pay-offs, the optimal price may not increase with the number of users. In two-sided 
markets, Chen and Tse (2008) discuss platform competition with linear diffusion 
dynamics and find that under the open-loop pure strategy, in non-equilibrium, the 
optimal price trajectories in the stronger platform increase with time, while in the 
weaker platform, the optimal price trajectory on each side first increases and then 
decreases. Cabral (2019) finds that the distribution of platform size at time t  in 
many cases is bimodal. 
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3. Model 
 
For concreteness in what follows, users on the two sides are sellers (superscript 

s) and buyers (superscript b). Prices at time t  charged by the platform are ( )bp t  

and ( )sp t . Let ( )x t  and ( )y t , respectively, denote the number of buyers and sellers 

on the platform at time t . Moreover, if the meaning is clear, we omit the argument 
t . For example, ( )bp t  will be expressed simply as bp . 

 
3.1 The willingness-to-pay functions 
On the buyers’ side, we use a concave willingness-to-pay function ( , )b eW yξ  

to describe buyer ξ ’s reservation price for subscribing to the platform, where ξ  

is uniformly distributed on [0,1]  and ey  represents this buyer’s expectations for 

the number of sellers. In this function, given ey , a buyer with a small ξ  benefits 

more from subscribing to the platform, i.e., 1 0bW < , and the indirect network 

effects are positive, i.e., 2 0bW > .1 In addition, to avoid the discussion of corner 

solutions, we assume that (1, ) 0b eW y = . We also consider that a buyer with a small 

ξ  benefits more from indirect network effects, i.e., 12 0bW ≤ . This assumption is 

commonly seen in the research of two-sided markets, such as Rochet and Tirole (2003) 
with 12 0bW <  and Armstrong (2006.) with 12 0bW = . Take online trading markets as 

an example. ξ  can correspond to an income level that is exceeded by [0,1]ξ ∈  of 

the total number of buyers. Then the income of a buyer with a small ξ  is high, 

and generally high-income buyers can buy more products than low-income buyers. 
On the sellers’ side, ( , )s eW xη  denotes the willingness-to-pay function of 

seller η , which is concave in ( , )exη . In the function, η  is uniformly distributed 

on [0,1]  and ex  represents seller η ’s expectations for the number of buyers. 

Similarly, on this side, we assume that 1 0sW < , 2 0sW > , (1, ) 0s eW x =  and 

12 0sW ≤ . 

 
3.2 Users’ expectations 
To simplify our analysis, we make assumptions about expectations based on a 

coordination device (Hałaburda and Yehezkel, 2019), where users coordinate 
beliefs regarding other users’ subscription decisions. In the initial state, we assume 
that 

(A0) Initial subscribers are those with low indexes ( (0)xξ ≤  and (0)yη ≤ ). 

The above assumption can be explained by the fact that users with low 

                                                      
1 In this paper, subscripts 1 and 2 of a function denote partial derivatives with respect to the first term 
and the second term in the bracket, respectively. 
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indexes benefit more from subscribing to the platform and then have a motive to 
subscribe early. For any time t , we assume that 

(A1) A subscribed seller η  believes that if there exist sellers with η η>  , he 

can remain on the platform as well. Similarly, a subscribed buyer ξ  remains on 
the platform if there are subscribed buyers with higher indexes. 

(A2) An unsubscribed seller η̂  will stay out of the market if unsubscribed 

sellers with lower indexes ( ˆη η< ) exist. Similarly, an unsubscribed buyer ξ̂  stays 
out of the market if there are unsubscribed buyers with lower indexes. 

(A0-A2) can be explained by the fact that users with high ξ  or η  benefit 
less from subscribing and then have less tolerance for risk. Therefore an 
unsubscribed seller with a small η̂  is very cautious, and he will be a watcher until 

the number of sellers on the platform grows to his bottom line, i.e., ˆ( )y t η= . 
For marginal users, because there are no referents, they have to make 

decisions on their own. We assume that 
(A3) Given the state at time t : ( ) { ( ), ( ), ( ), ( )}b st p t p t x t y tΩ = , marginal seller 

η  subscribes to the platform if and only if ( , ( , , ))s e sW x pη η β Ω > , where the 

marginal seller’s expectations for the number of buyers ( , )( ,ex η β Ω ) are a weighted 

average of the conjectured number of buyers ( ,1( , )ex η Ω ) and the existing number 

of buyers ( x ): ( (, , ) ,1, ) (1 )e ex x xη ηβ β βΩ = Ω + − . The conjectured number of 

buyers is based on the marginal seller’s belief and β  is a weight coefficient for 

,1( , )ex η Ω .  Since the change of the number of buyers in the future is affected by 

the existing number of sellers, the marginal seller concludes that the number of 
buyers wishing to subscribe will be 1( ,1, ) max( , )0e ex xη Ω = , where 1ex  satisfies 

1( , )eb bx yW p= . Marginal buyer ξ  subscribes to the platform if and only if 

( , ( , , ))b e bW y pξ ξ α Ω > , where ( (, , ) ,1, ) (1 )e ey y yξ ξα α αΩ +=Ω − . Similarly, the 

conjectured number of sellers ( ( ,1, )ey ξ Ω ) satisfies 1( ,1, ) max( , )0e ey yξ Ω = , where 
1( , )es sy xW p=  

In general, (A0-A3) shows that the number of subscribers on one side 
increases (resp., decreases) if and only if the marginal user on this side enters (resp., 
leave) the markets. In contrast to studies assuming expectations are based on 
participations in history, we also incorporate the effect of the number of users on the 
same side. Such effect is commonly seen in real life. For example, in online trading 
markets, with group psychology or the recommendation of subscribed buyers, 
unsubscribed buyers usually subscribe to a platform with many subscribed buyers. 
On the other side, the reason why sellers base expectations on the same side may 
be due to some favorable factors, such as aggregation effects. 

 
 



 
 
 
 
 
 
 
Yang Geng, Yu-Lin Zhang 
_______________________________________________________________ 

142 
 

 
3.3 Demand functions 
We first study the properties of marginal users’ willingness-to-pay functions. 

Due to the symmetric of two sides, we take the buyers’ side as an example. 
Lemma 1. ( , ( , , ))b eW yξ ξ α Ω  is a concave function on ,1{ : ( }, ) 0eyξ ξ Ω > , 

and a non-increasing function on ,{ 1: , )( 0}eyξ α ξ Ω = . 
Proof. All proofs appear in the Appendix. 
Lemma 1 shows that ( , ( , , ))b eW yξ ξ α Ω  may increase with ξ  if expectations 

are partly based on beliefs (see cases with 0α ≠  in Fig. 1). The reason is that for 
marginal buyers with low indexes in the early period, the numbers of subscribed 
buyers are small and then the conjectured number of sellers is small as well. 

 

 
Figure 1. The willingness-to-pay curve of marginal buyers 

 
With the analysis in Section 3.2, we then can obtain the dynamic subscription 

process of users, i.e., the directions of arrows in Fig. 1 and also the demand 
function of buyers denoted by ( , )bd α Ω  as follows: (1) If 0α = , only one 

equilibrium exists and 0(0, )bd ξΩ = ; (2) If 1α = , two stable equilibria exist, and 
2(1, )bd ξΩ =  when 1x ξ> , while (1, ) 0bd Ω =  when 1x ξ< ; (3) If 0 1α< < , there 

are two stable equilibria and 3( , )bd αα ξΩ =  when 2x αξ> , while 1( , )bd αα ξΩ =  

when 2x αξ< . 
 
3.4 Equilibria 
In the dynamic subscription process, we assume, on the buyers’ side, that 

/x dx dt=  and is in direct proportion to the unsubscribed buyers willing to 
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subscribe, i.e., ( ( , ) )b bx G d xα= Ω − , where / ( ) 0b b bG G d x′ = ∂ ∂ − ≥  and 

(0) 0bG = . 

On the sellers’ side, we assume / ( ( , ) )s sy dy dt G d yβ= = Ω − , where 

(0) 0sG = , / ( ) 0s s sG G d y′ = ∂ ∂ − ≥  and ( , )sd β Ω  is the demand function of 
sellers. 

In the above diffusion model, the dynamic process stops at 0x =  and 0y = . 

In equilibrium, we have ( , )bd xα Ω =  and  ( , )sd yβ Ω = . However because users’ 
expectations are partly based on beliefs, the expected numbers may not be fulfilled. 
Therefore the equilibrium should also satisfy ( , , )ex xη β Ω =  and ( , , )ey yξ α Ω = . 

Lemma 2. The state { , , , }b sp p x yΩ =  is an equilibrium if and only if 

( , ) ;    ( , )b b s sW x y p W y x p= = . 

Lemma 2 implies that even if the subscription decisions of users are affected 
by their beliefs, the final equilibria are fixed with given prices. 

 
4. Optimal dynamic pricing strategies 
 
The profit function of the monopolistic two-sided platform is 

0
= ( ( ) ( ) ( ) ( ) ( ( ), ( )))t b se p t x t p t y t c x t y t dtδ+∞ −Π + − , 

where ( ( ), ( ))c x t y t  is the cost function of the platform and δ  is the discount rate. 
The optimization problem then is: 

0
max = ( , )te t dtδ π

+∞ −Π Ω , 

subject to ( ( , ) )b bx G d xα= Ω − , ( ( , ) )s sy G d yβ= Ω − , 0(0)x x=  and 0(0)y y= , 

where ( , ) ( , )b st p x p y c x yπ Ω = + − . 

In the problem, the prices are not required to satisfy the nonnegative 
conditions as subsidizing users is common in two-sided markets. We apply the 
optimal control theory to solve this problem. The Hamiltonian function is 

1 2( , ) ( ( , ) ) ( ( , ) )t b b s sH e t G d x G d yδ π λ α λ β−= Ω + Ω − + Ω − , 

where 1λ  and 2λ  are the costate variables, and the current value Hamiltonian is 
1 2( , ) ( ( , ) ) ( ( , ) )c b b s sH t G d x G d yπ θ α θ β= Ω + Ω − + Ω − , 

where 1 1teδθ λ=  and 2 2teδθ λ= . 
Due to the maximum principle, the optimal trajectory ( ( ), ( ), ( ) ( )),b s xp t p t t ty    

should satisfy the first order conditions 
 0b s

c c

p p
H H= =  (1) 

and the costate equations 
 1 1 2 2;    c c

x yH Hθ δθ θ δθ= − + = − +  .  (2) 

As is customary, in what follows, subscripts denote partial derivatives, e.g., 
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= /b

c c b

p
H H p∂ ∂ , = /s

c c s

p
H H p∂ ∂ . In addition, since the network grows to a 

steady-state equilibrium, the optimal price trajectory should satisfy the 
transversality condition: lim 0

t
H

→+∞
= , and the costate variables should satisfy 

1 2lim lim 0
t t

λ λ
→+∞ →+∞

= = . 

In the maximum principle, from Equations (1), we obtain 
 1 2 1 20;   0b b s s

b b s s b b s s

p p p p
x G d G d y G d G dθ θ θ θ′ ′ ′ ′+ + = + + =  (3) 

Due to the analysis in Section 3.2 and 3.3, the demand functions are decided by 
the identical equations as follows: 
 ( ( , ), (( ,1, ), ) (1 ) )be b b b beW d pyW d yα α α α−Ω= Ω Ω + =   (4) 

and 
 ( ( , ), (( ,1, ), ) (1 ) )se s s s seW d pxW d xβ β β β−Ω= Ω Ω + = , (5) 

where ( ,( , ,) 1 )sex d β Ω Ω  and ( ,( , ,) 1 )bey d α Ω Ω  satisfy 

 1 ( ,1,( ( , ) ( ))), ,b b s s beW xW d d pβ βΩ= Ω Ω =  (6) 
and 
 1 ( ,1,( ( , ) ( ))), ,s s b b seW yW d d pα αΩ= Ω Ω = . (7) 

Then with Equations (3-7), Equations (2) can be restated as Proposition 1. 
Proposition 1. The optimal trajectory ( ),, ,b sp p x y    should satisfy 

 





marginal costs the effect of expectaion biasnetwork benefits

1 2 1
2 1 2

price elasticity

[ ( )] 1b s

b t se b s s b
x p p

b b

p c e yW W G W G

p

δ λ θ θ
ε

− − − − Δ + Δ
=

 


 (8) 

and 

 





marginal costs the effect of expectaion biasnetwork benefits

2 1 2
2 1 2

price elasticity

[ ( )] 1s b

s t be s b b s
y p p

s s

p c e xW W G W G

p

δ λ θ θ
ε

− − − − Δ + Δ
=

 


, (9) 

where 1b be b
i i iW W WΔ = − , 1s se s

i i iW W WΔ = − , 1,2i = , 
1

b
b

be

p

xW
ε −=  and 

1

s
s

se

p

yW
ε −= . 

Similar to the Lerner formula in Armstrong (2006), Proposition 1 shows that 
the optimal prices at any time are also affected by the marginal costs, network 
benefits and price elasticity. However, the economic meanings of them are changed.  
Take buyers as an example. From Equations (1-2), we can prove that 1

( )( ) x
τ

τλ τ = Π  

and 2
( )( ) y

τ
τλ τ = Π , where 

+
( , )te t dtτ δ

τ
π

∞ −Π = Ω . The marginal costs then also 

include the marginal loss from attracting one buyer ( 1 ( )
( )

( )

t
t d

e
dt x t

δ λ ∂ Π − Π− =
∂

 ) as 

increasing the number of buyers requires time. The price elasticity and network 
benefits should consider the existing numbers of users ( x  in bε  and y  in 2

seyW ) 
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rather than the demands of users. In addition, the platform should consider the 
effect of expectation bias that comes from the difference between beliefs and 
reality as well. However, in the final equilibrium, such effect does not exist since 

0b s
i iW WΔ = Δ = , 1,2i = . 

 
5 Equilibrium analysis 
 
In the steady-state equilibrium denoted by * * ** *( , , , )b s xp p yΩ = , we obtain 

that 1 2 0b sx y p p θ θ= = = = = =      and that * * *( , )b bW x y p=  and * * *( , )s sW y x p=  

due to Lemma 2. Hence in equilibrium, the prices are functions of x  and y , i.e., 

 ( , ) ( , );    ( , ) ( , )b b s sp x y W x y p x y W y x= = , (10) 

Proposition 2. In the equilibrium, the optimal prices should satisfy 

 
21 ( )( ) 1 1

;   
s bb s

y yx x
b b s s

p c xpp c yp

p p

δθδθ
ε ε

− − +− − +
= =  (11) 

where / ( )b b b
xp xpε = −  and / ( )s s s

yp ypε = − . 

In the steady-state equilibrium, the above results show that, the platform 
owner does not need to consider the effect of expectation bias in equilibrium. It 
implies that even if users may have unreasonable high expectations in the 
developing stage of the platform, they will finally find the truth. The platform 
should not be over-optimistic. The real status of the platform, such as the service 
quality and the numbers of users, is the key to make profits. In addition, the results 
also imply that even the willingness to pay functions and the cost functions are 
symmetric, the optimal prices on the two sides may be different due to the 
existence of 1δθ  and 2δθ . Therefore it gives rise to another explanation about 
skewed pricing in two-sided markets since the growth rates and the weight 
coefficients of the two sides also affect the optimal prices. 

Next, we study the effect of some exogenous parameters. From Equations (11), 
we obtain that the equilibrium satisfies 
 1 1( , ) ( , ) 0b s b

x x xx y p x y c yp xpϕ δθ= − + + − =  (12) 
and 
 2 2( , ) ( , ) 0s b s

y y yx y p x y c xp ypϕ δθ= − + + − =  (13) 

Let *t  denote the time in equilibrium. As 1
( )( ) x

τ
τλ τ = Π  and 2

( )( ) y
τ

τλ τ = Π , we 

obtain 
*

* *

*

* 1 2 ( ) *

0 0 0
( , ) ( , ) ( , ) ( ( , ) ( , ) )

x y tt t t t

t
t x y x y e t dt e e t dtδ δ δϕ ϕ δ π π

+∞ − − −Π Ω = = Ω + Ω     . 

Hence, *( , ) /t δΠ Ω  denotes the total profits discounted at time *t . We assume that 
*( , )tΠ Ω  is a concave function of *( )x t  and *( )y t . Then we have 1 0xϕ < , 2 0yϕ <  

and the determinant of 
1 1

2 2
x y

x y

ϕ ϕ
ϕ ϕ
 

Φ =  
  

 is positive, i.e., det( ) 0Φ > . 
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According to the theorem of implicit function, we then obtain 

 
1 12 1

1
2 22 1

1

det( )
y y

x x

N ζ ζ

ζ ζ

ϕ ϕϕ ϕ
ϕ ϕζ ϕ ϕ

−     −∂ −= −Φ =    ∂ Φ −       
 (14) 

from Equations (12-13), where * *[ , ]TN x y=  and ζ  is an exogenous parameter. 

Proposition 3. The equilibrium numbers of users satisfy '

* 0bG
x >  and * 0sG

y ′ > . 

Proposition 3 shows that if the growth rate of users on one side is high, the 
platform should attract more users on this side. The reason is that in a dynamic 
framework, if the number of users on one side grows rapidly, the costs of attracting 
users on this side will be low. 

Proposition 4. In the equilibrium, the optimal numbers of users satisfy 
* 1 2 1 2 * 2 1 2 1sgn{ } sgn{ / / };   sgn{ } sgn{ / / }y y x xx yα α α α α αθ θ ϕ ϕ θ θ ϕ ϕ= − = − . 

In addition, if * 0xα < , * 0yα > , and vice versa. In the completely symmetric case, 

we have * * 0b sp pα α= <  and * * 0x yα α= > . 
Unlike the results in Proposition 3, the above results show that the effect of 

α  on the number of buyers is uncertain. This uncertainty derives from the tradeoff 
between two benefits. First, with increasing α , the number of buyers becomes 
more valuable as it affects the subscription decisions of buyers. Second, it is also 
profitable to attract more sellers by lowing their prices because the prices on the 
sellers’ side will affect the expectations of buyers. Proposition 4 also implies that 
with increasing α , the platform owner should attract more users on at least one 
side. The reason is that if we exclude the tradeoff between the two sides, i.e., the 
completely symmetric case, with the increasing of the weight coefficients, the 
platform owner should set lower prices and attract more users since users become 
more sensitive to the prices. 

Proposition 5. In the equilibrium, the optimal numbers of users satisfy 
* 1 2 1 2 * 2 1 2 1sgn{ } sgn{ / / };   sgn{ } sgn{ / / }y y x xx yδ δϕ ϕ θ θ ϕ ϕ θ θ= − = − . 

In addition, if * 0xδ > , * 0yδ < , and vice versa. In the completely symmetric case, we 

have * * 0b sp pδ δ= >  and * * 0x yδ δ= < . 
Differing from the results in Proposition 4, if the discount rate is high, the 

platform bears high costs of attracting users when using a low-price strategy. 
Hence, in the completely symmetric case, the platform should set high prices and 
attract less users when the discount rate is high. Similarly, in the asymmetric case 
where the tradeoff between the two sides is important, with the increasing of the 
discount rate, the above result shows that the platform should attract less users on 
at least one side. 

 
6. Numerical Analysis 
 
In this section, we illustrate our results based on Evans and Schmalensee 

(2010) who study the dynamic subscription process in two-sided markets. 
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Specifically, the willingness-to-pay functions of buyers and sellers are 
( , ) (1 ) ;   ( , ) (1 )b e b e s e s eW y e y W x e xξ ξ η η= − = −  

The growth rate functions are linear, i.e., 
             [ ( , ) ];   [ ( , ) ]b b s sx v d x y v d yα β= Ω − = Ω −   (15) 

where the initial numbers of users are zeroes: (0) 0x =  and (0) 0y = . Besides, we 

also assume that the cost function of the platform is linear, i.e., ( , ) b sc x y c x c y= + . 
We first analyze the case where users on the two sides are completely myopic, 

i.e., 0α β= = . Since decreasing the numbers of users may send a negative signal to 

users, we assume that 0 ( , )b bp W x y≤ ≤  and 0 ( , )s sp W y x≤ ≤ . 
We then have the current value Lagrangian 

( ( , ) ) ( ( , ) )c c b b b s s s b b s sL H W x y p W y x p p pζ ζ ψ ψ= + − + − + + . 
By the maximum principle, we obtain the optimal bang-bang pricing as 

follows 

                
0

( )   ,        ,
0 0

i

i

ci
pi

c

p

HW
p t i b s

H

 >= =
<

 , (16) 

where (1 ( )) ( )b bW e x t y t= −  and (1 ( )) ( )s sW e y t x t= − . 

From Equation (16), we obtain that the number of users on side i  will grow 
when ( ) 0ip t =  and keep constant when ( )i ip t W= . With Equations (15), we then 

prove that the shortest length of time that the number of buyers (resp. sellers) 

grows from 0 to *x  (resp. *y ), denoted by xt  (resp. yt ) satisfies * 1
b xv tx e−= −  

(resp. * 1
s yv ty e−= − ). Since the profits in equilibrium are much higher than the 

profits in non-equilibrium, we study a simple case where the platform will not 
delay the time between non-equilibrium and equilibrium ( *T ), which implies that 

* max( , )x yT t t= . 
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Figure 2. Optimal trajectory in the myopic case2 

 
Figure 2 shows an example of the myopic case. In Fig. 2 (c) and (d), there are 

four switching times ( 1t , 2t , 3t  and yt ) on the buyers’ side and one switching 
time ( yt ) on the sellers’ side. At each time, the platform changes its pricing 
strategies. 

In the first time interval ( 1[0, )t t∈ ), we can see that in the optimal trajectory, 

the platform owner delays the entrance of buyers and attracts sellers first ( ( ) 0x t = , 

see Fig. 2 (a)). The reason is that when the number of sellers is too small, the costs 
of attracting a large user base on the buyers’ side are large. Hence, as shown in Fig. 
3 (a, c-d), when bc , bv  or δ  is high, the platform owner should delay the 
entrance time of buyers ( 1t ). Similarly, if the benefits of attracting buyers are small, 
e.g., be  or sv  is low, we obtain the same results (see Fig. 3 (b-c)). 

When 1 2[ , )t t t∈ , the optimal pricing strategy is ( ) 0bp t = . In this time 
interval, the platform attracts buyers through subsidies (below marginal costs). The 
problem for the platform is when to stop subsidies. In a simple case with 0δ = , 
Fig. 2 (a) shows that the platform should stop subsidies if the marginal buyer’s 
willingness-to-pay equals the marginal cost of attracting buyers 
( 2 2(1 ( )) ( )b be x t y t c− =  ). 3  The reason is that when 2 2 2( ) (1 ( )) ( )b b bp t e x t y t c= − <    

                                                      
2 The parameters used are 0.5be = , 0.4se = , 0.05b sc c= = , 4bv = , 1sv =  and 0δ = . 
3 At time 1t , we have 1 1( ) 0tθ =  since 1 1 1 1( ) ( ) / ( ( )) 0b

c b b

p
H x t t v e y tθ= − =  and 1( ) 0x t = . When 
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(resp., 2 2 2( ) (1 ( )) ( )b b bp t e x t y t c= − >   ), it is more profitable to delay (resp., advance) 

the time interval 1 2( , )t t . Besides, in the case with 0δ > , Fig. 3 (d) shows that 
2 2 2( ) (1 ( )) ( )b b bp t e x t y t c= − >   . In this case, as 0δ > , delaying the time interval 

1 2( , )t t  can reduce the loss from subsidies. 
 

 
Figure 3. Comparison between different parameters4 

 
In the third and fourth time intervals, we see that the number of buyers 

remains unchanged when 2 3[ , )t t t∈  and increases again when 3[ , ]yt t t∈ . Hence, 
except for the growth of users on the two sides, the platform should also attach 
importance to the proportion between the existing numbers of users on the two 
sides. 

Next, we study a symmetric case with , 0α β > . In this case, as shown in Fig. 

                                                                                                                                       
1 2( , )t t t∈ , we obtain 1 1b bc vθ θ= + . Then we can prove that 1 2 2 2( ) ( ) / ( (1 ( )))b bt c x t v x tθ = − . Finally, 

because 2 1 2( )= / ( ( ))b by t v e x tθ , we obtain that 2 2 2( ) (1 ( )) ( )b b bp t e x t y t c= − =   . 
4 The parameters of the basic case (the solid line) in Fig. 3 (a), (b) and (c) are the same as those in Fig. 

2. In Fig. 3 (a), the lower bc  is 0.045 and the higher sc  is 0.1. In Fig. 3 (b), the lower se  is 0.3 

and the higher be  is 0.55. In Fig. 3 (c), the lower bv  is 0.35 and the higher sv  is 0.12. In Fig. 3 

(d), the parameters of the basic case (the solid line) are 0.45be = , 0.45se = , 0.1bc = , 0.05sc = , 

0δ = , 1.5bv =  and 1sv = . In addition, in the case where 0δ > , 0.2δ = . 
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4, we see that the optimal prices cannot be higher than the boundary ( , )b bW x x p=  

(see curve AB  in Fig. 4 (a)) since when ( , )b bW x x p< , the demand of buyers will 

be zero, i.e., ( , ) 0bd α Ω = , and of course, such strategy is infeasible. 

 

 
Figure 4. Optimal trajectories in the symmetric case5 

 
In addition, when α  and β  are high, 1) in non-equilibrium, the platform 

owner needs to attract users on both sides as users are also sensitive to the number 
of users on the same side, which increases the costs of attracting users; and 2) in 
equilibrium, since users are more sensitive to the prices on the other side, a 
low-price strategy becomes profitable. Hence if α  and β  are high, the price 

trajectories increase rapidly in the period when the numbers of users are low and 
then converge to low equilibrium prices. Similarly, when δ  or b sc c=  is low or 

b sv v=  is high, the price trajectories increase rapidly in the period when the 
numbers of users are high (the costs of attracting users are low) and then converge 
to low equilibrium prices (a low-price strategy becomes profitable). 

 
7 Conclusions 
 
In this paper, we study dynamic pricing in two-sided markets while considering 

users’ expectations. The theoretical results show that similar to the static framework, 
the optimal prices at any time are affected by the marginal costs, network benefits 
and price elasticity. The difference is that the marginal costs in the dynamic model 
should include the loss from attracting users as increasing the numbers of users 
requires time, and the network benefits and price elasticity depend on the existing 
numbers of users rather than on the demands of users. In addition, the expectation 
                                                      
5 Other parameters in Figure 4 (a) are 1b se e= = , 0b sc c= = , 0.1b sv v= =  and 0.1δ = . The 

parameters in the base case of Fig. 4 (b) are the same as the case with 0.5α β= =  in Fig. 4 (a). In 

addition, in Fig. 4 (b), the higher bc  and bv  are 0.1 and 0.5, respectively, and the lower δ  is 0.05. 
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bias that comes from the difference between beliefs and reality affects the optimal 
prices in non-equilibrium. However, it does not affect the equilibrium prices as users 
are rational. Hence, in the long term, the real status of the platform, such as the 
service quality and the numbers of users, is the key to make profits. 

In the steady-state equilibrium, we find that in the dynamic framework, except 
for the indirect network effects, the growth rates and users’ beliefs may also give rise 
to skewed pricing. When the discount rate is low or when the weight coefficients of 
the conjectured numbers that depend on users’ beliefs are high, in the symmetric case, 
the platform should set low prices to attract more users on the two sides, while in the 
asymmetric case where the tradeoff between the two sides is important, the platform 
should attract more users on at least one side. 

The numerical results show that in the early period, the platform may delay the 
entrance of users on one side and attract only users on the other side if the costs of 
attracting a large user base on this side are large. Hence, except for the growth of 
users, the platform should attach importance to the proportion between the numbers 
of users on the two sides as well. In addition, if the weight coefficients are high, the 
optimal price trajectories increase rapidly in the period when the numbers of users 
are low and then converge to low equilibrium prices. 
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Appendix 
 
Proof of Lemma 1 
When { : }, , ) 0( 1eyξ ξ ξ Ω >∈ , from (A3) and xξ = , we have 1( , )es sW py ξ = . 

Then we obtain 1 0eyξ >  as 1 0sW <  and 2 0sW > . In addition, since 1( , )esW y ξ  is 

concave in 1( , )ey ξ  and 12 0sW ≤ , we can prove that 1 0eyξξ > . Finally, according to 

the concavity of ( , ( , , ))b eW yξ ξ α Ω  with respect to ( , ( , , ))eyξ ξ α Ω  and the results 

obtained above, we obtain that 0bWξξ < . When { : 0},1, )(eyξ ξ α ξ =Ω∈ , from (A3), 

we have 0bWξ =  if 1α = . When 1α ≠ , we have 0bWξ <  as 1 0bW < .   

Proof of Lemma 2 
In the equilibrium, due to the discussion in Section 3.2, we have ( , )b bW x y p=  

and ( , )s sW y x p=  because ( , , )ex xη β Ω =  and ( , , )ey yξ α Ω = . In addition, when 

( , )b bW x y p=  and ( , )s sW y x p= , we can prove that ( , , )ex xη β Ω = , 
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( , , )ey yξ α Ω =  and 0x = , 0y = . Then we obtain Lemma 2.   

Proof of Proposition 1 
From Equations (4) and (7), we have 1 2( , ) ( , ) 1b b b

be b be b

p d p

ed dyW Wα α αΩ + Ω =  and
1 1

1 2 0b

s e s

d
W y W+ = . Simplifying these two equations, we obtain 1

1( , ) /b

b s

p
d W αα Ω = Δ , 

where 1 1
1 1 2 2
be s be sW W W Wα αΔ = − . Similarly, from Equations (4-7), we can prove that 

2 /s

b be

p
d W αα= − Δ , 1

2 1(1 ) /b be s
yd W W αα= − − Δ , 2 /b

s se

p
d W ββ= − Δ , 1

1 /s

s b

p
d W β= Δ  and 

1
2 1(1 ) /s se b

xd W W ββ= − − Δ , where 1 1
1 1 2 2
b se b seW W W Wβ βΔ = − . 

Substituting the Equations above into Equations (3), we obtain 

 
1 1

1 21 2 1 2( ) ( )
;   

b se s be

b s

xW yW yW xW

G G

α β

αβ αβ

β αθ θ′ ′

− − Δ − − Δ
= =

Δ Δ
  (17) 

where 1 1
1 1 2 2
b s be seW W W Wαβ αβΔ = − . With Equations (17), Equations (2) can then be 

restated as Equations (8-9). 
   

Proof of Proposition 2 
In the steady-state equilibrium, from Equations (4-7), we have 

0b s
i iW WΔ = Δ = , 1,2i = , and from Equations (10), we obtain that 1

b be
xp W= , 

2
s se
xp W= , 2

b be
yp W=  and 1

s se
yp W= . Besides, since i t ieδθ λ=  and 0iθ = , we have 

t i i i ieδ λ δθ θ δθ= − + = −  , 1,2i = . Substituting these results into Proposition 1, we 
have Equations (11). 

   
Proof of Proposition 3, 4, 5 
In the equilibrium, from Equations (17), we have 

 1 2
( )( ) ( )( )

;   
( ) ( )

b s b s b s s b b s b s
x x x y y x y y x y y x

b b s b s s b s b s
x y y x x y y x

xp yp p p p p yp xp p p p p

G p p p p G p p p p

β α α β
θ θ

αβ αβ′ ′

− − − − − −
= =

− −
 (18) 

where (0)b bG G′ ′=  and (0)s sG G′ ′=  since ( , )bd xα Ω =  and  ( , )sd yβ Ω = . 

(1) For (0)bGζ ′=  or (0)sGζ ′= , from Equations (12-13), we have i i
ζ ζϕ δθ= − , 

and from Equations (18), we have 1 2 0s bG G
θ θ′ ′= = , 1 0bG

θ ′ <  and 2 0sG
θ ′ < .6 Then with 

Equation (14), 1 0xϕ <  and 2 0yϕ < , we prove Proposition 3. 

(2) For ζ α= , from Equations (12-13), we obtain i i
ζ ζϕ δθ= − , and from 

Equations (18), we obtain 

1 2
2 2

( )( 1) ( )( )
;   

( ) ( )

b s b s b s s b b s b s b s
x x x y y x y y x x x y y x

b b s b s s b s b s
x y y x x y y x

xp yp p p p p p p xp yp p p p p

G p p p p G p p p pα α

β β β β
θ θ

αβ αβ′ ′

− − − − − −
= =

− −
. 

In the steady-state equilibrium, since 
( , ) ( ( / )) ( / )b b b b b b b s s

x y x y x y x ydW x y p dx p dy dx p p dy dx dx p p p p= + = + = − , 

                                                      
6 Due to the economic meaning of 1θ  and 2θ , we consider that the two costate variables are positive. 
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we assume / 0b b s s
x y x yp p p p− <  to make sure that the equilibrium is stable. We then 

have 0b s b s
x y y xp p p pαβ− >  and 0i

αθ < , 1,2i = . Finally from Equation (14), 1 0xϕ <  

and 2 0yϕ < , we prove the general results in Proposition 4. In the symmetric case, we 

also have 1 2 0α αθ θ= < . With det( ) 0Φ > , we obtain 1 2 1 2
x y y xϕ ϕ ϕ ϕ= > = . Then from 

Equation (14), we prove * * 0x yα α= > . Besides, since / 0b b s s
x y x yp p p p− < , we obtain 

that 0b b
x yp p+ <  and that * * * * * * * *( ) 0b b b b b

x y x yp p x p y p p xα α α α= + = + < . 

(3) For ζ δ= , from Equations (12-13), we have 0i i
ζϕ θ= − < . Then, similar to 

the proof in (2) above, we can prove Proposition 5. 
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